Maneuvering Target Tracking Using Current Statistical Model Based Adaptive UKF for Wireless Sensor Network
نویسندگان
چکیده
—This paper presents Current statistical model based Adaptive Unscented Kalman Filter (CAUKF) for maneuvering target tracking, which is based on Received Signal Strength Indication (RSSI). In order to introduce the Kalman filter, the state-space model, which uses RSSI values as the measurement equation, needs to be obtained. Thus a current statistical model for maneuvering target based on the path loss model is presented. To avoid the negative influence of current statistical model’s limited acceleration, the functional relation between the maneuvering status of target and the estimation of the neighboring position information is applied to carry out the adaptation of the process noise covariance Q(k). Then, a novel idea of modified Sage-Husa estimator is introduced to adapt the process noise covariance matrix Q(k), while the adaptive measurement noise covariance matrix R(k) is implemented by a fuzzy inference system. The experimental results show that the final improved CAUKF is an algorithm with faster response and better tracking accuracy especially in maneuvering target tracking.
منابع مشابه
Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks
Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...
متن کاملMultiple Target Tracking in Wireless Sensor Networks Based on Sensor Grouping and Hybrid Iterative-Heuristic Optimization
A novel hybrid method for tracking multiple indistinguishable maneuvering targets using a wireless sensor network is introduced in this paper. The problem of tracking the location of targets is formulated as a Maximum Likelihood Estimation. We propose a hybrid optimization method, which consists of an iterative and a heuristic search method, for finding the location of targets simultaneously. T...
متن کاملMathematical Analysis of Optimal Tracking Interval Management for Power Efficient Target Tracking Wireless Sensor Networks
In this paper, we study the problem of power efficient tracking interval management for distributed target tracking wireless sensor networks (WSNs). We first analyze the performance of a distributed target tracking network with one moving object, using a quantitative mathematical analysis. We show that previously proposed algorithms are efficient only for constant average velocity objects howev...
متن کاملA Cubature-Principle-Assisted IMM-Adaptive UKF Algorithm for Maneuvering Target Tracking Caused by Sensor Faults
Aimed at solving the problem of decreased filtering precision while maneuvering target tracking caused by non-Gaussian distribution and sensor faults, we developed an efficient interacting multiple model–unscented Kalman filter (IMM-UKF) algorithm. By dividing the IMM-UKF into two links, the algorithm introduces the cubature principle to approximate the probability density of the random variabl...
متن کاملTarget Tracking Based on Virtual Grid in Wireless Sensor Networks
One of the most important and typical application of wireless sensor networks (WSNs) is target tracking. Although target tracking, can provide benefits for large-scale WSNs and organize them into clusters but tracking a moving target in cluster-based WSNs suffers a boundary problem. The main goal of this paper was to introduce an efficient and novel mobility management protocol namely Target Tr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCM
دوره 10 شماره
صفحات -
تاریخ انتشار 2015